Title: | 'GLCM' Texture Features |
---|---|
Description: | Two 'Gray Level Co-occurrence Matrix' ('GLCM') implementations are included: The first is a fast 'GLCM' feature texture computation based on 'Python' 'Numpy' arrays ('Github' Repository, <https://github.com/tzm030329/GLCM>). The second is a fast 'GLCM' 'RcppArmadillo' implementation which is parallelized (using 'OpenMP') with the option to return all 'GLCM' features at once. For more information, see "Artifact-Free Thin Cloud Removal Using Gans" by Toizumi Takahiro, Zini Simone, Sagi Kazutoshi, Kaneko Eiji, Tsukada Masato, Schettini Raimondo (2019), IEEE International Conference on Image Processing (ICIP), pp. 3596-3600, <doi:10.1109/ICIP.2019.8803652>. |
Authors: | Lampros Mouselimis [aut, cre] , Takahiro Toizumi [cph] (Author of the fastGLCM Python code) |
Maintainer: | Lampros Mouselimis <[email protected]> |
License: | GPL-3 |
Version: | 1.0.2 |
Built: | 2025-01-12 04:51:39 UTC |
Source: | https://github.com/mlampros/fastglcm |
GLCM feature texture extraction
GLCM feature texture extraction
# init <- fastglcm$new()
# init <- fastglcm$new()
fastglcm$new()
--------------
GLCM_compute()
--------------
new()
Initialization method for the 'fastglcm' R6 class
fastglcm$new()
GLCM_compute()
The GLCM computation method to receive the results
fastglcm$GLCM_compute( img, method, vmin = 0, vmax = 255, levels = 8, ks = 5, distance = 1, angle = 0, verbose = FALSE )
img
a numeric matrix
method
a character string specifying the method. Can be one of 'mean', 'std', 'contrast', 'dissimilarity', 'homogeneity', 'ASM_Energy', 'max' or 'entropy'
vmin
a numeric value specifying the minimum value of the input image ( img )
vmax
a numeric value specifying the maximum value of the input image ( img )
levels
an integer specifying the window size. This parameter will create a mask of size levels x levels internally
ks
an integer specifying the kernel size. A kernel of 1's will be created and the cv2.filter2D filter will be utilized for the convolution
distance
a numeric value specifying the pixel pair distance offsets (a 'pixel' value such as 1.0, 2.0 etc.)
angle
a numeric value specifying the pixel pair angles (a 'degree' value such as 0.0, 30.0, 45.0, 90.0 etc.)
verbose
a boolean. If TRUE then information will be printed out in the console
a list object if the method is set to 'ASM_Energy' otherwise a numeric matrix
clone()
The objects of this class are cloneable with this method.
fastglcm$clone(deep = FALSE)
deep
Whether to make a deep clone.
https://github.com/tzm030329/GLCM https://github.com/1044197988/Python-Image-feature-extraction
## Not run: require(fastGLCM) require(OpenImageR) file_im = system.file('images', 'Sugar_Cane_Bolivia_PlanetNICFI.png', package = 'fastGLCM') im = readImage(file_im) #................................... # convert to gray and make sure that # pixel values are between 0 and 255 #................................... im = rgb_2gray(im) im = im * 255 MIN = min(as.vector(im)) MAX = max(as.vector(im)) #............... # methods to use #............... methods_py = c('mean', 'std', 'contrast', 'dissimilarity', 'homogeneity', 'ASM_Energy', 'max', 'entropy') init = fastglcm$new() lst_glcm_py = list() for (item_m in methods_py) { cat(paste0('Method: ', item_m), '\n') res_item = init$GLCM_compute(img = im, method = item_m, vmin = as.integer(MIN), vmax = as.integer(MAX), levels = as.integer(8), ks = as.integer(5), distance = 1.0, angle = 0.0) lst_glcm_py[[item_m]] = res_item } #.............................. # Create two different sublists # for 'ASM' and 'Energy' #.............................. lst_glcm_py = append(lst_glcm_py, list(lst_glcm_py[['ASM_Energy']][[1]]), after = 5) names(lst_glcm_py)[6] = 'ASM' lst_glcm_py = append(lst_glcm_py, list(lst_glcm_py[['ASM_Energy']][[2]]), after = 6) names(lst_glcm_py)[7] = 'energy' lst_glcm_py[['ASM_Energy']] = NULL str(lst_glcm_py) #......................... # multi-plot of the output #......................... plot_multi_images(list_images = lst_glcm_py, par_ROWS = 2, par_COLS = 5, titles = names(lst_glcm_py)) ## End(Not run)
## Not run: require(fastGLCM) require(OpenImageR) file_im = system.file('images', 'Sugar_Cane_Bolivia_PlanetNICFI.png', package = 'fastGLCM') im = readImage(file_im) #................................... # convert to gray and make sure that # pixel values are between 0 and 255 #................................... im = rgb_2gray(im) im = im * 255 MIN = min(as.vector(im)) MAX = max(as.vector(im)) #............... # methods to use #............... methods_py = c('mean', 'std', 'contrast', 'dissimilarity', 'homogeneity', 'ASM_Energy', 'max', 'entropy') init = fastglcm$new() lst_glcm_py = list() for (item_m in methods_py) { cat(paste0('Method: ', item_m), '\n') res_item = init$GLCM_compute(img = im, method = item_m, vmin = as.integer(MIN), vmax = as.integer(MAX), levels = as.integer(8), ks = as.integer(5), distance = 1.0, angle = 0.0) lst_glcm_py[[item_m]] = res_item } #.............................. # Create two different sublists # for 'ASM' and 'Energy' #.............................. lst_glcm_py = append(lst_glcm_py, list(lst_glcm_py[['ASM_Energy']][[1]]), after = 5) names(lst_glcm_py)[6] = 'ASM' lst_glcm_py = append(lst_glcm_py, list(lst_glcm_py[['ASM_Energy']][[2]]), after = 6) names(lst_glcm_py)[7] = 'energy' lst_glcm_py[['ASM_Energy']] = NULL str(lst_glcm_py) #......................... # multi-plot of the output #......................... plot_multi_images(list_images = lst_glcm_py, par_ROWS = 2, par_COLS = 5, titles = names(lst_glcm_py)) ## End(Not run)
GLCM feature texture extraction
fastGLCM_Rcpp( data, methods, levels = 8, kernel_size = 5, distance = 1, angle = 0, dir_save = NULL, threads = 1, verbose = FALSE )
fastGLCM_Rcpp( data, methods, levels = 8, kernel_size = 5, distance = 1, angle = 0, dir_save = NULL, threads = 1, verbose = FALSE )
data |
a numeric matrix |
methods |
a vector of character strings. One or all of the following: 'mean', 'std', 'contrast', 'dissimilarity', 'homogeneity', 'ASM', 'energy', 'max', 'entropy' |
levels |
an integer specifying the window size. This parameter will create a mask of size levels x levels internally |
kernel_size |
an integer specifying the kernel size. A kernel of 1's will be created and the cv2.filter2D filter will be utilized for the convolution |
distance |
a numeric value specifying the pixel pair distance offsets (a 'pixel' value such as 1.0, 2.0 etc.) |
angle |
a numeric value specifying the pixel pair angles (a 'degree' value such as 0.0, 30.0, 45.0, 90.0 etc.) |
dir_save |
either NULL or a character string specifying a valid path to a directory where the output GLCM matrices (for the specified 'methods') will be saved. By setting this parameter to a valid directory the memory usage will be decreased. |
threads |
an integer value specifying the number of cores to run in parallel |
verbose |
a boolean. If TRUE then information will be printed out in the console |
The following are two factors which (highly probable) will increase memory usage during computations:
1st. the image size (the user might have to resize the image first)
2nd. the 'levels' parameter. The bigger this parameter the more matrices will be initialized and more memory will be used. For instance if the 'levels' parameter equals to 8 then 8 * 8 = 64 matrices of equal size to the input image will be initialized. That means if the image has dimensions (2745 x 2745) and the image-object size is approx. 60 MB then by initializing 64 matrices the memory will increase to 3.86 GB.
This function is an Rcpp implementation of the python fastGLCM module. When using each function separately by utilizing all threads it's slightly faster compared to the python vectorized functions, however it's a lot faster when computing all features at once.
The dir_save parameter allows the user to save the GLCM's as .csv files to a directory. That way the output GLCM's matrices won't be returned in the R session (reduced memory usage). However, by saving the GLCM's to .csv files the computation time increases.
a list consisting of one or more GLCM features
https://github.com/tzm030329/GLCM
require(fastGLCM) require(OpenImageR) require(utils) temp_dir = tempdir(check = FALSE) # temp_dir zip_file = system.file('images', 'JAXA_Joso-City2_PAN.tif.zip', package = "fastGLCM") utils::unzip(zip_file, exdir = temp_dir) path_extracted = file.path(temp_dir, 'JAXA_Joso-City2_PAN.tif') im = readImage(path = path_extracted) dim(im) #............................................... # resize the image and adjust pixel values range #............................................... im = resizeImage(im, 500, 500, 'nearest') im = OpenImageR::norm_matrix_range(im, 0, 255) #--------------------------------- # computation of all GLCM features #--------------------------------- methods = c('mean', 'std', 'contrast', 'dissimilarity', 'homogeneity', 'ASM', 'energy', 'max', 'entropy') res_glcm = fastGLCM_Rcpp(data = im, methods = methods, levels = 8, kernel_size = 5, distance = 1.0, angle = 0.0, threads = 1) # str(res_glcm) # plot_multi_images(list_images = res_glcm, # par_ROWS = 2, # par_COLS = 5, # titles = methods) if (file.exists(path_extracted)) file.remove(path_extracted)
require(fastGLCM) require(OpenImageR) require(utils) temp_dir = tempdir(check = FALSE) # temp_dir zip_file = system.file('images', 'JAXA_Joso-City2_PAN.tif.zip', package = "fastGLCM") utils::unzip(zip_file, exdir = temp_dir) path_extracted = file.path(temp_dir, 'JAXA_Joso-City2_PAN.tif') im = readImage(path = path_extracted) dim(im) #............................................... # resize the image and adjust pixel values range #............................................... im = resizeImage(im, 500, 500, 'nearest') im = OpenImageR::norm_matrix_range(im, 0, 255) #--------------------------------- # computation of all GLCM features #--------------------------------- methods = c('mean', 'std', 'contrast', 'dissimilarity', 'homogeneity', 'ASM', 'energy', 'max', 'entropy') res_glcm = fastGLCM_Rcpp(data = im, methods = methods, levels = 8, kernel_size = 5, distance = 1.0, angle = 0.0, threads = 1) # str(res_glcm) # plot_multi_images(list_images = res_glcm, # par_ROWS = 2, # par_COLS = 5, # titles = methods) if (file.exists(path_extracted)) file.remove(path_extracted)
Plot multiple images
plot_multi_images(list_images, par_ROWS, par_COLS, ...)
plot_multi_images(list_images, par_ROWS, par_COLS, ...)
list_images |
a list of images that should be visualized |
par_ROWS |
an integer specifying the number of rows of the ouput plot-grid |
par_COLS |
an integer specifying the number of columns of the output plot-grid |
... |
further arguments for the 'plot_multi_images' method of the 'GaborFeatureExtract' R6 class ('OpenImageR' package) |
For the usage of the 'plot_multi_images()' function see the example section of the 'fastGLCM_Rcpp()' function and 'fastglcm()' R6 class
it doesn't return an R object but it displays a list of input images