Package 'fastText'

Title: Efficient Learning of Word Representations and Sentence Classification
Description: An interface to the 'fastText' <https://github.com/facebookresearch/fastText> library for efficient learning of word representations and sentence classification. The 'fastText' algorithm is explained in detail in (i) "Enriching Word Vectors with subword Information", Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov, 2017, <doi:10.1162/tacl_a_00051>; (ii) "Bag of Tricks for Efficient Text Classification", Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov, 2017, <doi:10.18653/v1/e17-2068>; (iii) "FastText.zip: Compressing text classification models", Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Herve Jegou, Tomas Mikolov, 2016, <arXiv:1612.03651>.
Authors: Lampros Mouselimis [aut, cre] , Facebook Inc [cph]
Maintainer: Lampros Mouselimis <[email protected]>
License: MIT + file LICENSE
Version: 1.0.4
Built: 2025-01-10 04:17:30 UTC
Source: https://github.com/mlampros/fasttext

Help Index


Interface for the fasttext library

Description

Interface for the fasttext library

Usage

fasttext_interface(
  list_params,
  path_output = "",
  MilliSecs = 100,
  path_input = "",
  remove_previous_file = TRUE,
  print_process_time = FALSE
)

Arguments

list_params

a list of valid parameters

path_output

a character string specifying the file path where the process-logs (or output in generally) should be saved

MilliSecs

an integer specifying the delay in milliseconds when printing the results to the specified path_output

path_input

a character string specifying the path to the input data file

remove_previous_file

a boolean. If TRUE, in case that the path_output is not an empty string (""), then an existing file with the same output name will be removed

print_process_time

a boolean. If TRUE then the processing time of the function will be printed out in the R session

Details

This function allows the user to run the various methods included in the fasttext library from within R

The "output" parameter which exists in the named list (see examples section) and is passed to the "list_params" parameter of the "fasttext_interface()" function, is a file path and not a directory name and will actually return two files (a *.vec* and a *.bin*) to the output directory.

Value

a vector of class character that includes the parameters and file paths used as input to the function

References

https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText/blob/master/docs/supervised-tutorial.md

Examples

## Not run: 

library(fastText)


####################################################################################
# If the user intends to run the following examples then he / she must replace     #
# the 'input', 'output', 'path_input', 'path_output', 'model' and 'test_data' file #
# paths depending on where the data are located or should be saved!                #
# ( 'tempdir()' is used here as an example folder )                                #
####################################################################################


# ------------------------------------------------
# print information for the Usage of each function [ parameters ]
# ------------------------------------------------

fastText::printUsage()
fastText::printTestUsage()
fastText::printTestLabelUsage()
fastText::printQuantizeUsage()
fastText::printPrintWordVectorsUsage()
fastText::printPrintSentenceVectorsUsage()
fastText::printPrintNgramsUsage()
fastText::printPredictUsage()
fastText::printNNUsage()
fastText::printDumpUsage()
fastText::printAnalogiesUsage()
fastText::print_parameters(command = "supervised")

# -----------------------------------------------------------------------
# In case that the 'command' is one of 'cbow', 'skipgram' or 'supervised'
# -----------------------------------------------------------------------

list_params = list(command = 'cbow',
                   lr = 0.1,
                   dim = 200,
                   input = file.path(tempdir(), "doc.txt"),
                   output = tempdir(),
                   verbose = 2,
                   thread = 1)

res = fasttext_interface(list_params,
                         path_output = file.path(tempdir(),"model_logs.txt"),
                         MilliSecs = 100)


# ---------------------
# 'supervised' training
# ---------------------

list_params = list(command = 'supervised',
                    lr = 0.1,
                    dim = 200,
                    input = file.path(tempdir(), "cooking.train"),
                    output = file.path(tempdir(), "model_cooking"),
                    verbose = 2,
                    thread = 1)

res = fasttext_interface(list_params,
                         path_output = file.path(tempdir(), 'logs_supervise.txt'),
                         MilliSecs = 5)

# ---------------------------------------
# In case that the 'command' is 'predict'
# ---------------------------------------

list_params = list(command = 'predict',
                   model = file.path(tempdir(), 'model_cooking.bin'),
                   test_data = file.path(tempdir(), 'cooking.valid'),
                   k = 1,
                   th = 0.0)

res = fasttext_interface(list_params,
                         path_output = file.path(tempdir(), 'predict_valid.txt'))


# ------------------------------------
# In case that the 'command' is 'test'  [ k = 5 , means that precision and recall are at 5 ]
# ------------------------------------

list_params = list(command = 'test',
                   model = file.path(tempdir(), 'model_cooking.bin'),
                   test_data = file.path(tempdir(), 'cooking.valid'),
                   k = 5,
                   th = 0.0)

res = fasttext_interface(list_params)   # It only prints 'Precision', 'Recall' to the R session


# ------------------------------------------
# In case that the 'command' is 'test-label'   [ k = 5 , means that precision and recall are at 5 ]
# ------------------------------------------

list_params = list(command = 'test-label',
                   model = file.path(tempdir(), 'model_cooking.bin'),
                   test_data = file.path(tempdir(), 'cooking.valid'),
                   k = 5,
                   th = 0.0)

res = fasttext_interface(list_params,              # prints also 'Precision', 'Recall' to R session
                         path_output = file.path(tempdir(), "test_valid.txt"))

# -----------------
# quantize function  [ it will take a .bin file and return an .ftz file ]
# -----------------

# the quantize function is currenlty (01/02/2019) single-threaded
# https://github.com/facebookresearch/fastText/issues/353#issuecomment-342501742

list_params = list(command = 'quantize',
                   input = file.path(tempdir(), 'model_cooking.bin'),
                   output = file.path(tempdir(), gsub('.bin', '.ftz', 'model_cooking.bin')))

res = fasttext_interface(list_params)


# -----------------
# quantize function  [ by using the optional parameters 'qnorm' and 'qout' ]
# -----------------

list_params = list(command = 'quantize',
                   input = file.path(tempdir(), 'model_cooking.bin'),
                   output = file.path(tempdir(), gsub('.bin', '.ftz', 'model_cooking.bin')),
                   qnorm = TRUE,
                   qout = TRUE)

res = fasttext_interface(list_params)


# ------------------
# print-word-vectors   [ each line of the 'queries.txt' must be a single word ]
# ------------------

list_params = list(command = 'print-word-vectors',
                   model = file.path(tempdir(), 'model_cooking.bin'))

res = fasttext_interface(list_params,
                         path_input = file.path(tempdir(), 'queries.txt'),
                         path_output = file.path(tempdir(), 'print_vecs_file.txt'))


# ----------------------
# print-sentence-vectors   [ See also the comments in the main.cc file about the input-file ]
# ----------------------

list_params = list(command = 'print-sentence-vectors',
                   model = file.path(tempdir(), 'model_cooking.bin'))

res = fasttext_interface(list_params,
                         path_input = file.path(tempdir(), 'text.txt'),
                         path_output = file.path(tempdir(), 'SENTENCE_VECs.txt'))


# ------------
# print-ngrams       [ print to console or to output-file ]
# ------------

list_params = list(command = 'skipgram', lr = 0.1, dim = 200,
                   input = file.path(tempdir(), "doc.txt"),
                   output = tempdir(), verbose = 2, thread = 1,
                   minn = 2, maxn = 2)

res = fasttext_interface(list_params,
                         path_output = file.path(tempdir(), "ngram_out.txt"),
                         MilliSecs = 5)

list_params = list(command = 'print-ngrams',
                   model = file.path(tempdir(), 'ngram_out.bin'),
                   word = 'word')                           # print n-grams for specific word

res = fasttext_interface(list_params, path_output = "")             # print output to console
res = fasttext_interface(list_params,
                         path_output = file.path(tempdir(), "NGRAMS.txt"))   # output to file


# -------------
# 'nn' function
# -------------

list_params = list(command = 'nn',
                   model = file.path(tempdir(), 'model_cooking.bin'),
                   k = 20,
                   query_word = 'word')          # a 'query_word' is required

res = fasttext_interface(list_params,
                         path_output = file.path(tempdir(), "nn_output.txt"))


# ---------
# analogies   [ in the output file each analogy-triplet-result is separated with a newline ]
# ---------

list_params = list(command = 'analogies',
                   model = file.path(tempdir(), 'model_cooking.bin'),
                   k = 5)

res = fasttext_interface(list_params,
                         path_input = file.path(tempdir(), 'analogy_queries.txt'),
                         path_output = file.path(tempdir(), 'analogies_output.txt'))

# -------------
# dump function  [ the 'option' param should be one of 'args', 'dict', 'input' or 'output' ]
# -------------

list_params = list(command = 'dump',
                   model = file.path(tempdir(), 'model_cooking.bin'),
                   option = 'args')

res = fasttext_interface(list_params,
                         path_output = file.path(tempdir(), "DUMP.txt"))


## End(Not run)

Language Identification using fastText

Description

Language Identification using fastText

Usage

language_identification(
  input_obj,
  pre_trained_language_model_path,
  k = 1,
  th = 0,
  threads = 1,
  verbose = FALSE
)

Arguments

input_obj

either a valid character string to a valid path where each line represents a different text extract or a vector of text extracts

pre_trained_language_model_path

a valid character string to the pre-trained language identification model path, for more info see https://fasttext.cc/docs/en/language-identification.html

k

predict top k labels (1 by default)

th

probability threshold (0.0 by default)

threads

an integer specifying the number of threads to run in parallel. This parameter applies only if k > 1

verbose

if TRUE then information will be printed out in the console

Value

an object of class data.table which includes two or more columns with the names 'iso_lang_N' and 'prob_N' where 'N' corresponds to 1 to 'k' input parameter

References

https://fasttext.cc/docs/en/language-identification.html https://becominghuman.ai/a-handy-pre-trained-model-for-language-identification-cadd89db9db8

Examples

library(fastText)

vec_txt = c("Incapaz de distinguir la luna y la cara de esta chica,
             Las estrellas se ponen nerviosas en el cielo",
             "Unable to tell apart the moon and this girl's face,
             Stars are flustered up in the sky.")

file_pretrained = system.file("language_identification/lid.176.ftz", package = "fastText")

dtbl_out = language_identification(input_obj = vec_txt,
                                   pre_trained_language_model_path = file_pretrained,
                                   k = 3,
                                   th = 0.0,
                                   verbose = TRUE)
dtbl_out

Plot the progress of loss, learning-rate and word-counts

Description

Plot the progress of loss, learning-rate and word-counts

Usage

plot_progress_logs(path_logs = "progress_data.txt", plot = FALSE)

Arguments

path_logs

a character string specifying a valid path to a file where the progress-logs are saved

plot

a boolean specifying if the loss, learning-rate and word-counts should be plotted

Value

an object of class data.frame that includes the progress logs with columns 'progress', 'words_sec_thread', 'learning_rate' and 'loss'

References

http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

Examples

## Not run: 

library(fastText)

#-----------------------------------------------------------------
# the 'progress_data.txt' file corresponds to the 'path_output'
# parameter of the 'fasttext_interface()'. Therefore the user has
# to run first the 'fasttext_interface()' function to save the
# 'progress_data.txt' file to the desired folder.
#-----------------------------------------------------------------

res = plot_progress_logs(path = file.path(tempdir(), "progress_data.txt"),
                         plot = TRUE)


## End(Not run)

Print Usage Information when the command equals to 'analogies'

Description

Print Usage Information when the command equals to 'analogies'

Usage

printAnalogiesUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printAnalogiesUsage' function in the R session

Examples

library(fastText)

printAnalogiesUsage()

Print Usage Information when the command equals to 'dump'

Description

Print Usage Information when the command equals to 'dump'

Usage

printDumpUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printDumpUsage' function in the R session

Examples

library(fastText)

printDumpUsage()

Print Usage Information when the command equals to 'nn'

Description

Print Usage Information when the command equals to 'nn'

Usage

printNNUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printNNUsage' function in the R session

Examples

library(fastText)

printNNUsage()

Print Usage Information when the command equals to 'predict' or 'predict-prob'

Description

Print Usage Information when the command equals to 'predict' or 'predict-prob'

Usage

printPredictUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printPredictUsage' function in the R session

Examples

library(fastText)

printPredictUsage()

Print Usage Information when the command equals to 'print-ngrams'

Description

Print Usage Information when the command equals to 'print-ngrams'

Usage

printPrintNgramsUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printPrintNgramsUsage' function in the R session

Examples

library(fastText)

printPrintNgramsUsage()

Print Usage Information when the command equals to 'print-sentence-vectors'

Description

Print Usage Information when the command equals to 'print-sentence-vectors'

Usage

printPrintSentenceVectorsUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printPrintSentenceVectorsUsage' function in the R session

Examples

library(fastText)

printPrintSentenceVectorsUsage()

Print Usage Information when the command equals to 'print-word-vectors'

Description

Print Usage Information when the command equals to 'print-word-vectors'

Usage

printPrintWordVectorsUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printPrintWordVectorsUsage' function in the R session

Examples

library(fastText)

printPrintWordVectorsUsage()

Print Usage Information when the command equals to 'quantize'

Description

Print Usage Information when the command equals to 'quantize'

Usage

printQuantizeUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printQuantizeUsage' function in the R session

Examples

library(fastText)

printQuantizeUsage()

Print Usage Information when the command equals to 'test-label'

Description

Print Usage Information when the command equals to 'test-label'

Usage

printTestLabelUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printTestLabelUsage' function in the R session

Examples

library(fastText)

printTestLabelUsage()

Print Usage Information when the command equals to 'test'

Description

Print Usage Information when the command equals to 'test'

Usage

printTestUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printTestUsage' function in the R session

Examples

library(fastText)

printTestUsage()

Print Usage Information for all parameters

Description

Print Usage Information for all parameters

Usage

printUsage(verbose = TRUE)

Arguments

verbose

if TRUE then information will be printed in the console

Value

It does not return a value but only prints the available parameters of the 'printUsage' function in the R session

Examples

library(fastText)

printUsage()