--- title: "Functionality of the Fitbit Web Api" author: "Lampros Mouselimis" date: "`r Sys.Date()`" output: html_vignette: self_contained: yes papersize: a3 vignette: > %\VignetteIndexEntry{Functionality of the Fitbit Web Api} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, echo = FALSE} #................................................. # REFERENCES for cache: # # - https://yihui.org/knitr/demo/cache/ # - https://yihui.org/knitr/options/#cache # - https://stackoverflow.com/a/52163751 # - https://github.com/yihui/knitr/issues/994 # - https://stackoverflow.com/a/10629121 #................................................. build_vignette_with_user_id_token = FALSE if (build_vignette_with_user_id_token) { knitr::opts_chunk$set(fig.width = 12, fig.height = 10, fig.align = "center", warning = FALSE, message = FALSE, eval = TRUE, echo = TRUE, cache = TRUE, cache.rebuild = TRUE) # for 'cache.rebuild' see the references USER_ID = 'use the true user-id here' token = 'use the true token here' } if (!build_vignette_with_user_id_token) { knitr::opts_chunk$set(fig.width = 12, fig.height = 10, fig.align = "center", warning = FALSE, message = FALSE) file_heart = system.file('tests_vignette_rds', 'heart_dat.RDS', package = 'fitbitViz') file_sleep = system.file('tests_vignette_rds', 'sleep_ts.RDS', package = 'fitbitViz') file_tcx = system.file('tests_vignette_rds', 'res_tcx.RDS', package = 'fitbitViz') file_rst = system.file('tests_vignette_rds', 'raysh_rst.tif', package = 'fitbitViz') heart_dat = readRDS(file = file_heart) sleep_ts = readRDS(file = file_sleep) res_tcx = readRDS(file = file_tcx) raysh_rst = raster::raster(x = file_rst) } ```
The purpose of this Vignette is to show the main functionality of the **fitbitViz** R package. You can read more about the **Fitbit** [Web API](https://dev.fitbit.com/build/reference/web-api/) and how to create an application to receive a **token** and the **user-id** in the *README.md* file. For the rest of this vignette I'll assume that the following variables are defined (USER_ID, token) that correspond to your Fitbit user-id and token:
```{r, eval = FALSE} require(fitbitViz) #.................. # parameter setting #.................. USER_ID = 'My user-id' # Specify here your 'user-id' token = "My token" # Specify here your 'token' ```
**Be aware** that the **token expires after 8 hours**. If you receive a **401 HTTP error** it means that you have to **refresh your token**. You can do that using the ***refresh_token_app()*** function which requires the **client id**, **client secret** and **refresh token** of your registered Fitbit application in the following way (you can find more information on how to receive these three parameters in the [README.md](https://github.com/mlampros/fitbitViz#requirements) file):
```{r, eval = FALSE} #.............................................. # Refresh token once it expires (after 8 hours) #.............................................. client_id = 'xxxxxx' client_secret = 'xxxxxxxxxxxxxxxxxx' refresh_token = 'xxxxxxxxxxxxxxxxxxxxxxxx' # refresh the token new_token = refresh_token_app(client_id = client_id, client_secret = client_secret, refresh_token = refresh_token) # a named list that includes the new 'access_token' and 'refresh_token' str(new_token) ```
We can now continue defining the remaining variables,
```{r} WEEK = 11 # for this use case pick the 11th week of the year 2021 num_character_error = 135 # print that many character in case of an error weeks_2021 = fitbitViz:::split_year_in_weeks(year = 2021) # split a year in weeks # Start the week at monday (see: https://github.com/tidyverse/lubridate/issues/509) date_start = lubridate::floor_date(lubridate::ymd(weeks_2021[WEEK]), unit = 'weeks') + 1 # Add 6 days to the 'date_start' variable to come to a 7-days plot date_end = date_start + 6 sleep_time_begins = "00H 40M 0S" sleep_time_ends = "08H 00M 0S" VERBOSE = FALSE # disable verbosity ```
The previous code snippet uses one week of my personal *Fitbit* data (the *11th week of 2021*) to plot my * **heart rate time series** * **heart rate heatmap** * **heart rate variability during sleep time** * **sleep time series** * **GPS data of outdoor activities** * **3-dimensional map of activities** The data for all these functions are available to download using the **csv** buttons in this *Rmarkdown* file.
### heart rate time series
The **heart_rate_time_series()** function takes the **user-id**, **token**, the **start-** and **end-dates**, the **start-** and **end-time**, the **detail level** (1 minute) and returns the **heart rate time series**. Each output plot (of the *multiplot*) includes in the **x-axis** the **time** and in the **y-axis** the **heart rate value**. The highest heart rate value (peak) of the day is highlighted using a vertical and horizontal **blue** line,
```{r, echo = TRUE, out.height = '1000px', eval = FALSE} #....................... # heart rate time series #....................... heart_dat = fitbitViz::heart_rate_time_series(user_id = USER_ID, token = token, date_start = as.character(date_start), date_end = as.character(date_end), time_start = '00:00', time_end = '23:59', detail_level = '1min', ggplot_intraday = TRUE, ggplot_ncol = 2, ggplot_nrow = 4, verbose = VERBOSE, show_nchar_case_error = num_character_error) heart_dat$plt ```
![](./data_plots/heart_rate_time_series.png)
```{r, echo = FALSE} #............................................... # DT::datatable() as option to download the data [ heart rate time series ] #............................................... dt_heart_rate_data = data.table::rbindlist(heart_dat$heart_rate_intraday) dt_heart_rate = DT::datatable(data = dt_heart_rate_data, rownames = FALSE, extensions = 'Buttons', options = list(pageLength = 10, dom = 'Bfrtip', buttons = list(list(extend = 'csv', filename = 'heart_rate_time_series')))) dt_heart_rate ```
### heart rate heatmap
The **heart rate heatmap** shows the **min**, **median** and **max** heart rate Levels in the **y-axis** for each day of the specified week (**x-axis**). As the legend shows, the displayed values range from 40 to 220 and higher values appear in *purple* or *orange* color,
```{r, echo = TRUE, out.height = '1000px', eval = FALSE} #............................ # heart rate intraday heatmap [ plot options: https://yihui.org/knitr/options/#plots ] #............................ heart_intra = heart_dat$heart_rate_intraday hrt_heat = fitbitViz::heart_rate_heatmap(heart_rate_intraday_data = heart_intra, angle_x_axis = 0) hrt_heat ```
![](./data_plots/heatmap.png)
### heart rate variability during sleep time
Heart Rate Variability (HRV) intraday data for a single date. HRV data applies specifically to a user's "main sleep", which is the longest single period of time asleep on a given date. It measures the HRV rate at various times and returns the *Root Mean Square of Successive Differences (rmssd)*, *Low Frequency (LF)*, *High Frequency (HF)*, and *Coverage* data for a given measurement. **Rmssd** measures short-term variability in your heart rate while asleep. **LF** and **HF** capture the power in interbeat interval fluctuations within either high frequency or low frequency bands. Finally, **coverage** refers to data completeness in terms of the number of interbeat intervals. The **fitbit_data_type_by_date()** function allows the user to also compute the 'spo2' (Blood Oxygen Saturation), 'br' (Breathing Rate), 'temp' (Temperature) and 'cardioscore' (Cardio Fitness Score or VO2 Max) by adjusting the **type** parameter.
```{r, echo = TRUE, eval = FALSE} #....................... # heart rate variability #....................... hrt_rt_var = fitbitViz::fitbit_data_type_by_date(user_id = USER_ID, token = token, date = as.character(date_start), type = 'hrv', plot = TRUE, show_nchar_case_error = num_character_error) ```
![](./data_plots/heart_rate_variability.png)
### sleep time series
The **sleep time series** visualization is similar to the *Fitbit Mobile* Visualization and in the **x-axis** shows the specified by the user **sleep time interval** whereas in the **y-axis** shows the **sleep Levels** (*wake*, *rem*, *light*, *deep*). Lower levels like *deep sleep* appear in dark blue whereas higher levels like *wake* appear in light blue,
```{r, echo = TRUE, out.height = '1000px', eval = FALSE} #....................... # sleep data time series #....................... sleep_ts = fitbitViz::sleep_time_series(user_id = USER_ID, token = token, date_start = as.character(date_start), date_end = as.character(date_end), ggplot_color_palette = 'ggsci::blue_material', ggplot_ncol = 2, ggplot_nrow = 4, show_nchar_case_error = num_character_error, verbose = VERBOSE) sleep_ts$plt_lev_segments ```
![](./data_plots/sleep_time_levels.png)
```{r, echo = FALSE} #..................................... # DT::datatable() of the sleep heatmap #..................................... dt_sleep_heatmap = DT::datatable(data = sleep_ts$heatmap_data, rownames = FALSE, extensions = 'Buttons', options = list(pageLength = 10, dom = 'Bfrtip', buttons = list(list(extend = 'csv', filename = 'sleep_heat_map')))) dt_sleep_heatmap ```
### GPS data of outdoor activities
To make use of the *GPS data* from the Fitbit Application we have first to extract the **log-id** for a time interval after a specified *Date*,
```{r, echo = TRUE, eval = FALSE} #................... # extract the log-id (required for the GPS data) #................... log_id = fitbitViz::extract_LOG_ID(user_id = USER_ID, token = token, after_Date = as.character(date_start), limit = 10, sort = 'asc', verbose = VERBOSE) # log_id ```
Once we have the *log-id* we can define the *time zone* of the route to receive all GPS data,
```{r, echo = TRUE, eval = FALSE} #.................................................... # return the gps-ctx data.table for the output log-id #.................................................... res_tcx = fitbitViz::GPS_TCX_data(log_id = log_id, user_id = USER_ID, token = token, time_zone = 'Europe/Athens', verbose = VERBOSE) # res_tcx ```
The following *Leaflet Point Coordinates* show my outdoor activity during the *11th week of 2021* (the legend shows the elevation of the route),
```{r, echo = TRUE} #................................ # Create the Leaflet / LeafGL Map #................................ res_lft = fitbitViz::leafGL_point_coords(dat_gps_tcx = res_tcx, color_points_column = 'AltitudeMeters', provider = leaflet::providers$Esri.WorldImagery, option_viewer = rstudioapi::viewer, CRS = 4326) ```
```{r, echo = TRUE} res_lft ```
```{r, echo = FALSE} #................................. # DT::datatable() for the GPS data #................................. dt_gps_tcx = DT::datatable(data = res_tcx, rownames = FALSE, extensions = 'Buttons', class = 'white-space: nowrap', # unwrap the column-contents so that rows become flat, see: https://github.com/rstudio/DT/issues/353 options = list(pageLength = 10, dom = 'Bfrtip', buttons = list(list(extend = 'csv', filename = 'GPS_TCX_data')))) dt_gps_tcx ```
### 3-dimensional plots of activities
Another option of this package is to plot a route in 3-dimensional space. For this purpose we'll use the [rayshader](https://github.com/tylermorganwall/rayshader) package, which internally uses [rgl](https://github.com/dmurdoch/rgl) (*OpenGL*). First, we have to extend the boundaries of our route for approximately *1.000 thousand meters* (adjust this value depending on your area of interest),
```{r, echo = FALSE, eval = FALSE} # reference for the st_buffer function: https://stackoverflow.com/a/54754935 ``` ```{r, echo = TRUE} #................................................... # compute the sf-object buffer and the raster-extend (1000 meters buffer) #................................................... sf_rst_ext = fitbitViz::extend_AOI_buffer(dat_gps_tcx = res_tcx, buffer_in_meters = 1000, CRS = 4326, verbose = VERBOSE) # sf_rst_ext ```
Then for the extended area we will download **Copernicus Digital Elevation Model (DEM)** data. The *Copernicus elevation data* come either in **30** or in **90** meter resolution. We will pick the *30* meter resolution product for this route. The **CopernicusDEM** is an R package, make sure that you have installed and configured the **awscli** Operating System Requirement if you intend to download and reproduce the next 3-dimensional map using the elevation data,
```{r, echo = TRUE, eval = FALSE} #.................................................................. # Download the Copernicus DEM 30m elevation data # there is also the option to download the DEM 90m elevation data # which is of lower resolution but the image size is smaller which # means faster download #.................................................................. dem_dir = tempdir() # dem_dir dem30 = CopernicusDEM::aoi_geom_save_tif_matches(sf_or_file = sf_rst_ext$sfc_obj, dir_save_tifs = dem_dir, resolution = 30, crs_value = 4326, threads = parallel::detectCores(), verbose = VERBOSE) TIF = list.files(dem_dir, pattern = '.tif', full.names = T) # TIF if (length(TIF) > 1) { #.................................................... # create a .VRT file if I have more than 1 .tif files #.................................................... file_out = file.path(dem_dir, 'VRT_mosaic_FILE.vrt') vrt_dem30 = CopernicusDEM::create_VRT_from_dir(dir_tifs = dem_dir, output_path_VRT = file_out, verbose = VERBOSE) } if (length(TIF) == 1) { #.................................................. # if I have a single .tif file keep the first index #.................................................. file_out = TIF[1] } #....................................... # crop the elevation DEM based on the # coordinates extent of the GPS-CTX data #....................................... raysh_rst = fitbitViz::crop_DEM(tif_or_vrt_dem_file = file_out, sf_buffer_obj = sf_rst_ext$sfc_obj, verbose = VERBOSE) # terra::plot(raysh_rst) ```
The GPS route that I use is an *ascending & descending* route therefore we can convert the GPS (TCX) data to a spatial *LINESTRING* by using the maximum altitude as a *split point* of the route to visualize the ascending route in *blue* and the descending in *red* (there is also the alternative to specify the split point based on time using the **time_split_asc_desc** parameter),
```{r, echo = TRUE} linestring_dat = fitbitViz::gps_lat_lon_to_LINESTRING(dat_gps_tcx = res_tcx, CRS = 4326, time_split_asc_desc = NULL, verbose = VERBOSE) ```
then we create the *'elevation_sample_points' data.table parameter* for the *3-dim* plot based on the *min.*, *middle* and *max.* altitude of the previously computed *'res_tcx'* data,
```{r, echo = TRUE} idx_3m = c(which.min(res_tcx$AltitudeMeters), as.integer(length(res_tcx$AltitudeMeters) / 2), which.max(res_tcx$AltitudeMeters)) cols_3m = c('latitude', 'longitude', 'AltitudeMeters') dat_3m = res_tcx[idx_3m, ..cols_3m] ```
and finally we visualize the *3-dimensional Rayshader Map*,
```{r, echo = TRUE, eval = FALSE} #..................................................... # Conversion of the 'SpatRaster' to a raster object # because the 'rayshader' package accepts only rasters #..................................................... rst_obj = raster::raster(raysh_rst) raster::projection(rst_obj) <- terra::crs(raysh_rst, proj = TRUE) snapshot_rayshader_path = file.path(tempdir(), 'rayshader_img.png') rgl::open3d(useNULL = TRUE) # this removes the second rgl-popup-window fitbitViz::rayshader_3d_DEM(rst_buf = rst_obj, rst_ext = sf_rst_ext$raster_obj_extent, linestring_ASC_DESC = linestring_dat, elevation_sample_points = dat_3m, zoom = 0.3, windowsize = c(1000, 800), add_shadow_rescale_original = FALSE, verbose = TRUE) rgl::rgl.snapshot(snapshot_rayshader_path) rgl::par3d(mouseMode = "trackball") # options: c("trackball", "polar", "zoom", "selecting") rgl::rglwidget() ```
![](./data_plots/rayshader_map.png)
In the output map we observe * the *3 specified elevation vertical lines* (including their *altitude values* in meters) * in *blue* color the *ascending* route * in *red* color the *descending* route