Title: | Non Metric Space (Approximate) Library |
---|---|
Description: | A Non-Metric Space Library ('NMSLIB' <https://github.com/nmslib/nmslib>) wrapper, which according to the authors "is an efficient cross-platform similarity search library and a toolkit for evaluation of similarity search methods. The goal of the 'NMSLIB' <https://github.com/nmslib/nmslib> Library is to create an effective and comprehensive toolkit for searching in generic non-metric spaces. Being comprehensive is important, because no single method is likely to be sufficient in all cases. Also note that exact solutions are hardly efficient in high dimensions and/or non-metric spaces. Hence, the main focus is on approximate methods". The wrapper also includes Approximate Kernel k-Nearest-Neighbor functions based on the 'NMSLIB' <https://github.com/nmslib/nmslib> 'Python' Library. |
Authors: | Lampros Mouselimis [aut, cre] , B. Naidan [cph] (Author of the Non-Metric Space Library (NMSLIB)), L. Boytsov [cph] (Author of the Non-Metric Space Library (NMSLIB)), Yu. Malkov [cph] (Author of the Non-Metric Space Library (NMSLIB)), B. Frederickson [cph] (Author of the Non-Metric Space Library (NMSLIB)), D. Novak [cph] (Author of the Non-Metric Space Library (NMSLIB)) |
Maintainer: | Lampros Mouselimis <[email protected]> |
License: | Apache License (>= 2.0) |
Version: | 1.0.7 |
Built: | 2025-01-05 04:33:30 UTC |
Source: | https://github.com/mlampros/nmslibr |
Approximate Kernel k nearest neighbors using the nmslib library
KernelKnn_nmslib( data, y, TEST_data = NULL, k = 5, h = 1, weights_function = NULL, Levels = NULL, Index_Params = NULL, Time_Params = NULL, space = "l1", space_params = NULL, method = "hnsw", data_type = "DENSE_VECTOR", dtype = "FLOAT", index_filepath = NULL, print_progress = FALSE, num_threads = 1 )
KernelKnn_nmslib( data, y, TEST_data = NULL, k = 5, h = 1, weights_function = NULL, Levels = NULL, Index_Params = NULL, Time_Params = NULL, space = "l1", space_params = NULL, method = "hnsw", data_type = "DENSE_VECTOR", dtype = "FLOAT", index_filepath = NULL, print_progress = FALSE, num_threads = 1 )
data |
either a matrix or a scipy sparse matrix |
y |
a numeric vector specifying the response variable (in classification the labels must be numeric from 1:Inf). The length of y must equal the rows of the data parameter |
TEST_data |
a test dataset (in case of a matrix the TEST_data should have equal number of columns with the data). It is assumed that the TEST_data is an unlabeled dataset |
k |
an integer. The number of neighbours to return |
h |
the bandwidth (applicable if the weights_function is not NULL, defaults to 1.0) |
weights_function |
there are various ways of specifying the kernel function. See the details section. |
Levels |
a numeric vector. In case of classification the unique levels of the response variable are necessary |
Index_Params |
a list of (optional) parameters to use in indexing (when creating the index) |
Time_Params |
a list of parameters to use in querying. Setting Time_Params to NULL will reset |
space |
a character string (optional). The metric space to create for this index. Page 31 of the manual (see references) explains all available inputs |
space_params |
a list of (optional) parameters for configuring the space. See the references manual for more details. |
method |
a character string specifying the index method to use |
data_type |
a character string. One of 'DENSE_UINT8_VECTOR', 'DENSE_VECTOR', 'OBJECT_AS_STRING' or 'SPARSE_VECTOR' |
dtype |
a character string. Either 'FLOAT' or 'INT' |
index_filepath |
a character string specifying the path to a file, where an existing index is saved |
print_progress |
a boolean (either TRUE or FALSE). Whether or not to display progress bar |
num_threads |
an integer. The number of threads to use |
There are three possible ways to specify the weights function, 1st option : if the weights_function is NULL then a simple k-nearest-neighbor is performed. 2nd option : the weights_function is one of 'uniform', 'triangular', 'epanechnikov', 'biweight', 'triweight', 'tricube', 'gaussian', 'cosine', 'logistic', 'gaussianSimple', 'silverman', 'inverse', 'exponential'. The 2nd option can be extended by combining kernels from the existing ones (adding or multiplying). For instance, I can multiply the tricube with the gaussian kernel by giving 'tricube_gaussian_MULT' or I can add the previously mentioned kernels by giving 'tricube_gaussian_ADD'. 3rd option : a user defined kernel function
try({ if (reticulate::py_available(initialize = FALSE)) { if (reticulate::py_module_available("nmslib")) { library(nmslibR) x = matrix(runif(1000), nrow = 100, ncol = 10) y = runif(100) out = KernelKnn_nmslib(data = x, y = y, k = 5) } } }, silent=TRUE)
try({ if (reticulate::py_available(initialize = FALSE)) { if (reticulate::py_module_available("nmslib")) { library(nmslibR) x = matrix(runif(1000), nrow = 100, ncol = 10) y = runif(100) out = KernelKnn_nmslib(data = x, y = y, k = 5) } } }, silent=TRUE)
Approximate Kernel k nearest neighbors (cross-validated) using the nmslib library
KernelKnnCV_nmslib( data, y, k = 5, folds = 5, h = 1, weights_function = NULL, Levels = NULL, Index_Params = NULL, Time_Params = NULL, space = "l1", space_params = NULL, method = "hnsw", data_type = "DENSE_VECTOR", dtype = "FLOAT", index_filepath = NULL, print_progress = FALSE, num_threads = 1, seed_num = 1 )
KernelKnnCV_nmslib( data, y, k = 5, folds = 5, h = 1, weights_function = NULL, Levels = NULL, Index_Params = NULL, Time_Params = NULL, space = "l1", space_params = NULL, method = "hnsw", data_type = "DENSE_VECTOR", dtype = "FLOAT", index_filepath = NULL, print_progress = FALSE, num_threads = 1, seed_num = 1 )
data |
a numeric matrix |
y |
a numeric vector specifying the response variable (in classification the labels must be numeric from 1:Inf). The length of y must equal the rows of the data parameter |
k |
an integer. The number of neighbours to return |
folds |
the number of cross validation folds (must be greater than 1) |
h |
the bandwidth (applicable if the weights_function is not NULL, defaults to 1.0) |
weights_function |
there are various ways of specifying the kernel function. See the details section. |
Levels |
a numeric vector. In case of classification the unique levels of the response variable are necessary |
Index_Params |
a list of (optional) parameters to use in indexing (when creating the index) |
Time_Params |
a list of parameters to use in querying. Setting Time_Params to NULL will reset |
space |
a character string (optional). The metric space to create for this index. Page 31 of the manual (see references) explains all available inputs |
space_params |
a list of (optional) parameters for configuring the space. See the references manual for more details. |
method |
a character string specifying the index method to use |
data_type |
a character string. One of 'DENSE_UINT8_VECTOR', 'DENSE_VECTOR', 'OBJECT_AS_STRING' or 'SPARSE_VECTOR' |
dtype |
a character string. Either 'FLOAT' or 'INT' |
index_filepath |
a character string specifying the path to a file, where an existing index is saved |
print_progress |
a boolean (either TRUE or FALSE). Whether or not to display progress bar |
num_threads |
an integer. The number of threads to use |
seed_num |
a numeric value specifying the seed of the random number generator |
There are three possible ways to specify the weights function, 1st option : if the weights_function is NULL then a simple k-nearest-neighbor is performed. 2nd option : the weights_function is one of 'uniform', 'triangular', 'epanechnikov', 'biweight', 'triweight', 'tricube', 'gaussian', 'cosine', 'logistic', 'gaussianSimple', 'silverman', 'inverse', 'exponential'. The 2nd option can be extended by combining kernels from the existing ones (adding or multiplying). For instance, I can multiply the tricube with the gaussian kernel by giving 'tricube_gaussian_MULT' or I can add the previously mentioned kernels by giving 'tricube_gaussian_ADD'. 3rd option : a user defined kernel function
## Not run: x = matrix(runif(1000), nrow = 100, ncol = 10) y = runif(100) out = KernelKnnCV_nmslib(x, y, k = 5, folds = 5) ## End(Not run)
## Not run: x = matrix(runif(1000), nrow = 100, ncol = 10) y = runif(100) out = KernelKnnCV_nmslib(x, y, k = 5, folds = 5) ## End(Not run)
conversion of an R matrix to a scipy sparse matrix
mat_2scipy_sparse(x, format = "sparse_row_matrix")
mat_2scipy_sparse(x, format = "sparse_row_matrix")
x |
a data matrix |
format |
a character string. Either "sparse_row_matrix" or "sparse_column_matrix" |
This function allows the user to convert an R matrix to a scipy sparse matrix. This is useful because the nmslibR package accepts only python sparse matrices as input.
https://docs.scipy.org/doc/scipy/reference/sparse.html
try({ if (reticulate::py_available(initialize = FALSE)) { if (reticulate::py_module_available("scipy")) { library(nmslibR) set.seed(1) x = matrix(runif(1000), nrow = 100, ncol = 10) res = mat_2scipy_sparse(x) print(dim(x)) print(res$shape) } } }, silent=TRUE)
try({ if (reticulate::py_available(initialize = FALSE)) { if (reticulate::py_module_available("scipy")) { library(nmslibR) set.seed(1) x = matrix(runif(1000), nrow = 100, ncol = 10) res = mat_2scipy_sparse(x) print(dim(x)) print(res$shape) } } }, silent=TRUE)
Non metric space library
Non metric space library
# init <- NMSlib$new(input_data, Index_Params = NULL, Time_Params = NULL, # space='l1', space_params = NULL, method = 'hnsw', # data_type = 'DENSE_VECTOR', dtype = 'FLOAT', # index_filepath = NULL, load_data = FALSE, # print_progress = FALSE)
# init <- NMSlib$new(input_data, Index_Params = NULL, Time_Params = NULL, # space='l1', space_params = NULL, method = 'hnsw', # data_type = 'DENSE_VECTOR', dtype = 'FLOAT', # index_filepath = NULL, load_data = FALSE, # print_progress = FALSE)
input_data parameter : In case of numeric data the input_data parameter should be either an R matrix object or a scipy sparse matrix. Additionally, the input_data parameter can be a list including more than one matrices / sparse-matrices having the same number of columns ( this is ideal for instance if the user wants to include both a train and a test dataset in the created index )
the Knn_Query function finds the approximate K nearest neighbours of a vector in the index
the knn_Query_Batch Performs multiple queries on the index, distributing the work over a thread pool
the save_Index function saves the index to disk
If the index_filepath parameter is not NULL then an existing index will be loaded
Incrementally updating an already saved (and loaded) index is not possible (see: https://github.com/nmslib/nmslib/issues/73)
NMSlib$new(input_data, Index_Params = NULL, Time_Params = NULL, space='l1',
space_params = NULL, method = 'hnsw', data_type = 'DENSE_VECTOR',
dtype = 'FLOAT', index_filepath = NULL, load_data = FALSE,
print_progress = FALSE)
--------------
Knn_Query(query_data_row, k = 5)
--------------
knn_Query_Batch(query_data, k = 5, num_threads = 1)
--------------
save_Index(filename, save_data = FALSE)
new()
NMSlib$new( input_data, Index_Params = NULL, Time_Params = NULL, space = "l1", space_params = NULL, method = "hnsw", data_type = "DENSE_VECTOR", dtype = "FLOAT", index_filepath = NULL, load_data = FALSE, print_progress = FALSE )
input_data
the input data. See details for more information
Index_Params
a list of (optional) parameters to use in indexing (when creating the index)
Time_Params
a list of parameters to use in querying. Setting Time_Params to NULL will reset
space
a character string (optional). The metric space to create for this index. Page 31 of the manual (see references) explains all available inputs
space_params
a list of (optional) parameters for configuring the space. See the references manual for more details.
method
a character string specifying the index method to use
data_type
a character string. One of 'DENSE_UINT8_VECTOR', 'DENSE_VECTOR', 'OBJECT_AS_STRING' or 'SPARSE_VECTOR'
dtype
a character string. Either 'FLOAT' or 'INT'
index_filepath
a character string specifying the path to a file, where an existing index is saved
load_data
a boolean. If TRUE then besides the index also the saved data will be loaded. This parameter is used when the index_filepath parameter is not NULL (see the web links in the references section for more details). The user might also have to specify the skip_optimized_index parameter of the Index_Params in the "init" method
print_progress
a boolean (either TRUE or FALSE). Whether or not to display progress bar
Knn_Query()
NMSlib$Knn_Query(query_data_row, k = 5, include_query_data_row_index = FALSE)
query_data_row
a vector to query for
k
an integer. The number of neighbours to return
include_query_data_row_index
a boolean. If TRUE then the index of the query data row will be returned as well. It currently defaults to FALSE which means the first matched index is excluded from the results (this parameter will be removed in version 1.1.0 and the output behavior of the function will be changed too - see the deprecation warning)
knn_Query_Batch()
NMSlib$knn_Query_Batch(query_data, k = 5, num_threads = 1)
query_data
the query_data parameter should be of the same type with the input_data parameter. Queries to query for
k
an integer. The number of neighbours to return
num_threads
an integer. The number of threads to use
save_Index()
NMSlib$save_Index(filename, save_data = FALSE)
filename
a character string specifying the path. The filename to save ( in case of the save_Index method ) or the filename to load ( in case of the load_Index method )
save_data
a boolean. If TRUE then besides the index also the data will be saved (see the web links in the references section for more details)
clone()
The objects of this class are cloneable with this method.
NMSlib$clone(deep = FALSE)
deep
Whether to make a deep clone.
https://github.com/nmslib/nmslib/blob/master/manual/latex/manual.pdf
https://github.com/nmslib/nmslib/blob/master/python_bindings/notebooks/search_vector_dense_optim.ipynb
https://github.com/nmslib/nmslib/blob/master/python_bindings/notebooks/search_vector_dense_nonoptim.ipynb
https://github.com/nmslib/nmslib/issues/356
https://github.com/nmslib/nmslib/blob/master/manual/methods.md
https://github.com/nmslib/nmslib/blob/master/manual/spaces.md
try({ if (reticulate::py_available(initialize = FALSE)) { if (reticulate::py_module_available("nmslib")) { library(nmslibR) set.seed(1) x = matrix(runif(1000), nrow = 100, ncol = 10) init_nms = NMSlib$new(input_data = x) # returns a 1-dimensional vector (index, distance) #-------------------------------------------------- init_nms$Knn_Query(query_data_row = x[1, ], k = 5) # returns knn's for all data #--------------------------- all_dat = init_nms$knn_Query_Batch(x, k = 5, num_threads = 1) } } }, silent=TRUE)
try({ if (reticulate::py_available(initialize = FALSE)) { if (reticulate::py_module_available("nmslib")) { library(nmslibR) set.seed(1) x = matrix(runif(1000), nrow = 100, ncol = 10) init_nms = NMSlib$new(input_data = x) # returns a 1-dimensional vector (index, distance) #-------------------------------------------------- init_nms$Knn_Query(query_data_row = x[1, ], k = 5) # returns knn's for all data #--------------------------- all_dat = init_nms$knn_Query_Batch(x, k = 5, num_threads = 1) } } }, silent=TRUE)
conversion of an R sparse matrix to a scipy sparse matrix
TO_scipy_sparse(R_sparse_matrix)
TO_scipy_sparse(R_sparse_matrix)
R_sparse_matrix |
an R sparse matrix. Acceptable input objects are either a dgCMatrix or a dgRMatrix. |
This function allows the user to convert either an R dgCMatrix or a dgRMatrix to a scipy sparse matrix (scipy.sparse.csc_matrix or scipy.sparse.csr_matrix). This is useful because the nmslibR package accepts besides an R dense matrix also python sparse matrices as input.
The dgCMatrix class is a class of sparse numeric matrices in the compressed, sparse, column-oriented format. The dgRMatrix class is a class of sparse numeric matrices in the compressed, sparse, column-oriented format.
https://stat.ethz.ch/R-manual/R-devel/library/Matrix/html/dgCMatrix-class.html, https://stat.ethz.ch/R-manual/R-devel/library/Matrix/html/dgRMatrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix
try({ if (reticulate::py_available(initialize = FALSE)) { if (reticulate::py_module_available("scipy")) { if (Sys.info()["sysname"] != 'Darwin') { library(nmslibR) # 'dgCMatrix' sparse matrix #-------------------------- data = c(1, 0, 2, 0, 0, 3, 4, 5, 6) dgcM = Matrix::Matrix(data = data, nrow = 3, ncol = 3, byrow = TRUE, sparse = TRUE) print(dim(dgcM)) res = TO_scipy_sparse(dgcM) print(res$shape) # 'dgRMatrix' sparse matrix #-------------------------- dgrM = as(dgcM, "RsparseMatrix") print(dim(dgrM)) res_dgr = TO_scipy_sparse(dgrM) print(res_dgr$shape) } } } }, silent=TRUE)
try({ if (reticulate::py_available(initialize = FALSE)) { if (reticulate::py_module_available("scipy")) { if (Sys.info()["sysname"] != 'Darwin') { library(nmslibR) # 'dgCMatrix' sparse matrix #-------------------------- data = c(1, 0, 2, 0, 0, 3, 4, 5, 6) dgcM = Matrix::Matrix(data = data, nrow = 3, ncol = 3, byrow = TRUE, sparse = TRUE) print(dim(dgcM)) res = TO_scipy_sparse(dgcM) print(res$shape) # 'dgRMatrix' sparse matrix #-------------------------- dgrM = as(dgcM, "RsparseMatrix") print(dim(dgrM)) res_dgr = TO_scipy_sparse(dgrM) print(res_dgr$shape) } } } }, silent=TRUE)